
Find a Stochastic Path in a Robust-First Distributed System

Xinyu Chen

University of New Mexico, Albuquerque, Albuquerque, New Mexico 87131
xychen@cs.unm.edu

Abstract

To find a robust-first communication approach in distributed
systems, we present a case study of long distance path-finding
in the Movable Feast Machine(MFM). The model let com-
putation requests follow some signals to find the service
providers. Instead of using location-dependent addresses or
relative coordinates, These signals can indicate the gradient
of themselves so that they form stochastic paths towards the
source. Such paths are self-constructed and self-repairable.
This case study helps to extend communication distances out-
side Event Windows. This is a step towards a more robust
distributed system.

Introduction
determinism is always preferable because it seems simpler
and more efficient than uncertainty. Traditional computer ar-
chitectures based on this principle have helped to deal with
many real-world problems. But the simplicity and the ef-
ficiency here are not assured because the real world is full
of uncertainties. Such uncertainty comes from the variety
and redundancy of this world. Not a single event can de-
stroy the ecosystem. In a sense, the uncertainty represents a
robustness. This feature of the ecosystem is appreciated by
computational systems. It is time that we begin to think in a
robust-first way to make life-like systems. Then we can truly
accomplish scalable and high-performance computations.

Our model is designed on the framework of the Movable
Feast Machine (MFM). The Movable Feast Machine is an
indefinite scalable distributed system with the robust- first
thoughts. To achieve the indefinite scalability, the MFM
is designed to distribute processors and memories in spa-
tial grids while still processing regular structures such as
short spatial dependencies and error tolerance (Ackley et al.,
2012). The computation tasks are fulfilled by asynchronous
Cellular Automata, also called Atoms, which are instances
of Elements. A Element in MFM is like a class in an object-
oriented language. It describes the behaviors and other prop-
erties Automata. When given an event, an Atom can op-
erate a limited sites called the Event Window in a parallel
manner. The Event Window defines both timporal and spa-
tial restrictions. It restricts Atoms to interact with a limited

number of objects. Thus every objects in MFM are equal
and they are only responsible for their own behaviors. There
is no super units that controls global status. This lifelike na-
ture of the MFM gives the computations on it the ability of
self-organize and self-repair and eventually the robustness.
However, to achieve such robustness in MFM is not easy.
We have to change our serial thinkings to spatial thinkings
and random thinkings. The behaviors of Aotomata must be
reasonable with limited knowledge of the environment and
limited time constraints.

Path-finding is a useful subject both in real- world ap-
plications and theoretical researches. These include trans-
portation, communication, game design, computer networks
and so on. However, with the light of robust-first think-
ing, we need to reconsider this problem under spatial dis-
tributed conditions. The uncertainty of the events order and
the asynchronous feature in distributed systems give many
path-finding algorithms great challenges. Without global ad-
dresses, how can algorithms construct paths? On the other
hand, with global addresses, can these systems really be
scalable? Some primitive methods that we try to avoid under
efficient-first context need reevaluations under robust-first
concerns. Such methods include and not limited to bubble
sort and broadcasting communications. With no surprise,
some simple mechanisms work robustly in the biology envi-
ronment.

Inspired by biology, we find such effective examples of
path-finding. An firefly sends out flash signals to attract
partners, an E-Coli takes biased random walks towards food
source, neuronal growth cones are guided by both chemoat-
tractants and chemorepellents in vitro. All these reminds
us some path-finding mechanisms by the gradient of sig-
nals or medium. In this case study, we use a signal-emit
and gradient-check path-finding approach like broadcasting
communications. To achieve some generality, the model has
three abstract participants: Requests, Signals and Providers.

Requests diffuse in the given space of MFM until they
find a Provider and disappear. We consider in this situation
a Request is satisfied. Signals also diffuse in the universe
of the MFM. As pheromones, they have an evaporate rate.

This feature gives the whole collection of Signals a cloud-
like shape. The density of Signals around the Providers is
higher than the Signal density on the edge of this cloud. This
difference of density can be seen as the gradient towards the
Providers. Our intuitive idea is to let Requests detect and
follow this gradient towards the location with the highest
density. Hopefully, this location is close to Providers so that
Requests can find them. To detect Signal densities, Requests
count and record the number of Signals they see in the cur-
rent Event Window. By the same method, Signals also detect
and report the number of their fellow Signals in their Event
Windows. By comparing this densities, Requests can decide
the approximate direction of Providers. Due to the asyn-
chronous feature of the MFM, this comparison is between
the density observed by Requests in the current event with
the density records reported by Signals some events before.
However, this detect-and-compare approach still improves
the success of Requests’ path-finding.

The success of path-finding can be measured by the per-
centage of Requests that are satisfied within a given dis-
tance between Requests and Providers and a given period.
The distance restriction is a prerequisite because Signals will
evaporate. They can not cover a big area before they die. On
the other hand, if they live too long they will sparsely exist
in some Requests’ Event Window. In both cases, they can
not indicate the gradient well. Thus it is reasonable to limit
the distance between Signals and Providers. The restriction
on a given period is also necessary because Requests are
taking random walks towards Providers. With less and less
Requests left unsatisfied, the probability for one of them to
find Providers drops. It takes much longer time for the last
Request to be satisfied than average. So we add this time
constraint in order to show a trend of the effectiveness. By
adjusting the evaporate rate and emission odds of Signals,
we obtain different Signal strength, which is represented by
the pupolation of Signals in the universe of the MFM. Thus
we can measure the the effectiveness of path-finding under
various Signal strength.

Model Descriptions

Our path-finding model relies on the interactions between
Requests, Signals and Providers. To simplify the situation,
only Requests can move and they search for Providers. We
set the Providers in a fixed area. However in real-world ap-
plications, requests and providers are dynamic. We can see
this mobility from the usage of smart phones and other mo-
bile devices. Requests and providers may continuously van-
ish and appear. By the contrast of the moving Requests and
the static Providers, it looks like that Requests are captured
by Providers. In fact, Requests are positive in this interac-
tion. In the MFM, we use Element behaviors to implement
the interactions described above.

Provider Behaviors
Providers are responsible to send out Signals. They have
only one primary behavior. This SignalEmit behavior decide
how often Signals can be emitted and also the evaporate rate
of Signals. We can adjust these two parameters to get var-
ious density in the universe of MFM. The EmitOdds is set
from 0 to 10. The chance of emission is EmitOdds× 10%.
In this context, Providers send out no Signal in their event
when the EmitOdds is zero. They create a Signal in each
event when the EmitOdds is 10. Although the evaporate rate
is set by Providers, the actual behavior of evaporation will
be described next.

Signal Behaviors
Signals are the medium of this stochastic path. They have
three behaviors :CheckDensity, Evaporate and Move. When
a Signal Atom get an Event, it first checks how many other
Signals exist in the Event Window. Further behaviors de-
pend on the observations of fellow Signals. We set the ini-
tial density to two when the Event Window contains only
one Signal Atom. The observation of density is

0.1×NumProvider +NumSignal + 2 (1)

We set this number start from two based on the follow-
ing consideration. The Signal Atom itself should at least
count for density one when there is no other Signal in its
Event Window. When a Request meet a single Signal, the
Request’s observation is also density one. To let the Request
move towards this Signal, we raise the initial density. This
situation happens a lot at the edge of cloud and the initial
value of two has no other side effect. Also we reward Sig-
nals near Providers a bit by count Providers as Signals too.

Although the EvaporateRate is set by Providers, this
EvaporateRate is only a base number. The actual proba-
bility of evaporate is determined by the product of this base
number and the observed density. The Signals that are far
from Providers should evaporate faster than Signals that are
close to Providers. So the probability of evaporate is

PrEvp =

{
1

|EvRate−Obsv| , ifobsv ≤ 2
1

|3×EvRate−Obsv| , otherwise
(2)

Decided by the probability of evaporation, Signals destroy
themselves before moving further.

The last behavior of Signals is Move. If a Signal doesn’t
destroy itself, it decides how to move. At this moment, it
has a record of density to report to Requests. If it meets
no Request in the current Event, it diffuses. Otherwise it
stays and reports the density it observed. We design this
stay behavior for Signals because we want the observation
of Requests and the observation of Signals to be as close as
possible. If we let Signals diffuse at any time, Requests can
only read the history observation of Signals. However, due

to the asychronous feature in the MFM, this design is only
an attempt to keep observations from both side close. We
can adjust this in the future.

Request Behaviors
Requests are quite similar to Signals. They have also three
primary behaviors : Evaporate, CheckDensity and Move.
For Requests, the most important thing is to find Providers
and get satisfied. As soon as a Request is captured and sat-
isfied, it disappears. In this sense, Rquests can evaporate
too. This evaporation is not determined by some odds but
by the presence of Providers. We design the Evaporate hap-
pens at the distance of one. This restriction is based on the
assumption that too much Signals can hinder the Evaporate
process. In the future works, we can remove this limit and
let Requests find Providers in their entire Event Window.

Like Signals, the Requests’ CheckDensity behavior is also
a precondition for their Move behavior. When a Requestis
given an event, it counts the number of Signals in its Event
Window. If there exists some Signal Atoms, the Request can
read their density reports. The Requests always has the accu-
rate density in its current Event Window. While the reports
from Signals may come from several events before.

The Move Requests contains three subbehaviors: Swap,
TryMemory and Diffuse. The Swap happens when a Request
finds a Signal in their Event Window reports a higher density
than its own observation. In this case, the Request swaps
with that Signal. At the mean time, it remembers the offset
of this Signal. The memory of Requests’ recent swap offset
helps Requests to take TryMemory behavior. If a Request
finds no Signal in the Event Window, it has some probability
to move according to its memory of recent swap. This is the
TryMemory behavior. Hopefully they can find more Signals
along the memory direction. The probability is set to 0.5
because We discover some bad luck Requests fly out of the
universe with their memory if they never meet any Signals
again. They have a 0.5 probability to erase this memory and
diffuse.

In the following experiments, we first set the EmitOdds
zeor as our baseline to compare the effectiveness of our path-
finding process.

Experiments and Results
Acknowledgements

I want to thank Professor Ackley at the Department of Com-
puter Science at the University of New Mexico. And also
my classmates in the Artificial Life lectures in the Fall 2014.
Without their help, even a simple case study like this is not
possible.

