
Automatic Composition of Abstract Music by Distributed Agents

Max Ottesen1

1University of New Mexico, Albuquerque, NM 87131
mottese@unm.edu

Abstract

Since the early 1950’s, interest in computer-generated music
has been growing (Doornbusch, 2005). We decided to take
the approach of generating music from an artificial life stand-
point. We have done this by creating a set of rules for the
Moveable Feast Machine, a cellular automata. By varying
parameters such as how we treat dissonant sounds, what kind
of chords we wish to produce, or the type of musical scale
we want to work with, we can listen to the results change and
improve over time.

Introduction

The purpose of this research was to look for new methods of
computer-generating music. We decided to take an artificial
life approach to the problem. Our model runs on the Move-
able Feast Machine (MFM), a cellular automata with an em-
phasis on Robust-First Computing. For more information
on the MFM, read Ackley and Cannon’s paper (Ackley and
Cannon, 2011). Current methods for computer-generating
music include using mathematical models such as fractals
(Hs and Hs, 1991), using grammars (Baroni et al., 1983), or
using machine learning (M11, 2011). There are also evolu-
tionary methods, which we decided to go with. The impor-
tant difference to highlight is that current evolutionary meth-
ods require a human to act as the fitness function (Miranda,
2007), as it is difficult to capture the aesthetic qualities of
music computationally. We demonstrate how low-level, au-
tonomous agents can collectively write and rewrite note se-
quences with no human intervention based on simple ele-
ments of music theory such asconsonance. A consonance
is a combination of musical notes that are in harmony with
each other due to the relationship between their frequencies.

Model Description

This model runs using a combination of three new elements:
the Staff, the Note, and the Composer. Our model was de-
signed to be able to run in the presence of DRegs, but for
simplicity we did not include DRegs in our experiments.

Staff

The Staff element replicates itself to build a grid across the
universe. Each Staff knows its position relative to the first
Staff. This represents the musical staff in which Notes lie
on. If a Staff atom sees that it is out of position, it will delete
itself. The structure that the Staff element creates is self
healing, so it can exist in the presence of DRegs.

Note

A Note represents a musical pitch. It computes what mu-
sical pitch it represents based on its position relative to the
Staff elements around it. When the Note’s behavior method
is called, it checks around itself to verify that its stored pitch
and position within the staff are the same. If it is not, it cor-
rects itself by changing its stored pitch to match its position.

Composer

The Composer is our autonomous agent responsible for the
writing and rewriting of note sequences. Composers dif-
fuse around the MFM and can turn Res into Notes and more
Composers. If a Composer is adjacent to a Note, it has a
chance to move the Note based on the surrounding Notes
and some internal state. There are three different versionsof
the Composer that we run against each other to compare the
results. The first Composer simply moves Notes it is adja-
cent to around randomly with no regard for the surrounding
Notes or its own internal state. The second Composer is try-
ing to build any Triad it can. When evaluating a Note, it
examines the Notes above and below to determine the Triad
it could most easily make by moving the one Note it is cur-
rently working with. The third Composer is trying to con-
struct a specific type of Triad. The Triad they are trying
to build is stored internally. 7 different types of Triads can
be made at the moment. We can make a C major, D mi-
nor, E minor, F major 6 4, G major 6 4, A minor 6 3, and
B diminished 6 3. The reason for these triads is because
we are working with only one octave and only on the notes
in a C major scale. As Composers move into each others’
event windows, they exchange information about what Triad
they are trying to build. They then have a chance to change



Figure 1: Visual representation of how the model works

the type of Triad they are building to the type that the other
Composer is building. This chance increases for every Com-
poser they meet that has a different Triad. If a Composer
meets another Composer with the same Triad, the chance to
change Triads goes down, however the chance never goes to
0. There is also a very small chance that a composer will ran-
domly change its Triad. The reason Composers have specific
Triads they are trying to build is so that there is some con-
sistency between all of the sounds in one area. This makes
the music sound less random.

Results

Before we can pull any data from the model, we must first
define a metric to measure our results with. We do this by
comparing the frequencies of the notes that make up a chord.
We do this by using a system call Just Intonation. To give
an idea of how this system works, we can think of two notes
being played together as a fraction. For example, Middle
C can be denoted as 1/1. The fact that Middle C is 1/1 is
arbitrary. We could have chosen D to be 1/1, or F# to be
1/1. These fractions are the ratios between the frequency
of the fundamentals the pitch you are looking at and your
reference pitch (Middle C, in this case). If your reference
pitch vibrates at 200 cycles/second and your second pitch
vibrates at 400 cycles/second, we can call this second pitch
2/1. Fractions over 1 are special because they are some num-
ber of octaves above our reference pitch. If we are working
in a C major scale, we can define the notes as follow:

C D E F G A B
1/1 9/8 5/4 4/3 3/2 5/3 15/8

Table 1: Ratios for the C Major scale

To generalize this a bit more, we can assign whole num-
ber values to each of the notes in the scale so that we can
compare any notes rather than just one note and the refer-
ence pitch. These numbers are called Naturals. They leave
you with numbers you can create ratios with that you can
use to measure how consonant a specific chord is relative to
the scale you are in. The naturals for the C major scale are:

C D E F G A B
24 27 30 32 36 40 45

Table 2: Naturals for the C Major scale

Using these naturals, we can find a ratio between the nat-
urals of all of the notes in a chord. For example, a C-E-G
chord (a C major chord) could be called a 24:30:36 chord.
This ratio simplifies down to 4:5:6. Another chord we could
make might be a E-G-B chord (an E minor chord). In the
context of our C major scale, this chord can be represented
by the ratio 10:12:15. Now, to compare our C major chord
and E minor chord, we will perform the sum

n∑

i=1

1

r n

(1)

Where n is how many numbers you have in your ratio and
rn represents the nth number in your ratio. By performing
this sum, we find our C major chord to get a score of 0.6167
and our E minor chord to get a score of 0.25. The higher the
score, the more consonant our chord is in the context of our
key. In the key of C major, we can see that the C major chord
scores higher than the E minor chord. We can perform this
type of scoring with chords that have any number of notes in



Figure 2: Consonance measured using the Justly Intonated Naturals

them, but it is important to note that with our equation, we
can only compare chords with the same number of notes. We
must also keep in mind that the scores we compute are only
valid in our chosen key. A C major chord will get a different
score if its evaluated in a different context. Now that we have
a way to measure how consonant the music we produce is,
we will compare 4 different methods of arranging notes. We
will apply our equation to every chord and then average the
scores of chords with the same number of notes.

Ill discuss the methods slightly out of order. The green
bars represent the best possible score a chord with a given
number of notes can get. These were calculated by hand.
The first method the Composers used was to randomly move
Notes around. The second method the Composers used was
to attempt to make any triad. They would look around and
try to make a triad with the lowest note it could see. Our
third and final method was to have the Composers try to
make specific chords. WIth this method, they will always
move notes that arent in the specific chord they are making.
If they are unable to move a note into their chord, they will
delete the note. Keep in mind that the chord that each Com-
poser is trying to make can change. Composers talk with
each other and try to make the same chord as their neigh-
bors, but they have a chance to randomly change their chord.
This leads to clusters of Composers around the MFM with
each cluster making a different chord. One interesting thing
to notice is the lack of 7 note chords with the Specific Chord
method. This is due to the fact that our experiments were
run on the small, 2x2 version of the MFM. Since there tends
to be clumps of Composers all making a specific chord and
we’re running in a small environment, we only ever see 2
clumps for a maximum of 6 notes in any given column. We
have shown that our model does increase the average conso-
nance according to our chosen metric, but how do the results

sound? We performed an informal survey where we ask par-
ticipants to listen to 4 samples of music and say which one
they like the most. Each one of the samples was generated
using a different one of the 4 methods we discussed earlier.
The participants of the survey were not randomly chosen. I
asked friends, family, and classmates to take the survey and
then pass it on to their own friends, family, and classmates.
The results are shown in figure 3.

Discussion

Although we can measure the consonance of a piece of mu-
sic and try to determine how good it is, it is hard to say any-
thing certain since music is so subjective. There are many
factors that influence what kind of music you like including
culture, friends, or instruments you play. Because of this,
we only refer to the consonance of a piece of music rather
than how good it is. We can see that the randomly gener-
ated music and the hand-made, highest scoring music were
both extremely unpopular with people. The music gener-
ated by the Composers trying to make any triad was liked
slightly more, but not much. We can see that the music
generated with our third method where the Composers ag-
gressively form a specific triad was the most liked by far.
Perhaps a more helpful way of looking at the survey results
would be to rename the x-axis to overall consonance. This
way, we can see that as the overall consonance of the mu-
sic increases, the percentage of people that like that music
goes up for a while, but then starts to drop off as the music
gets to the point of best possible consonance. As pointed
out in the Results section, its interesting to note that there
are no 7 note chords with our Specific Chord method. This
is due to the fact that Notes are always moved into a chord
or deleted if they cant be put into a chord. Since we ran
our experiments on the small version of the MFM, the areas



Figure 3: Survey asking which Composer produced the most likeable music

that clusters of Composers end up making chords in take up
a very large vertical portion of the MFM. Because of this,
its fairly typical to only see about 2 different chords being
made in any given vertical space. With 3 notes per chord
and 2 chords per vertical space, we usually see a maximum
of 6 notes being played at once. Since we decided to make
our model for the MFM, we ended up having to make a few
very large sacrifices. The biggest sacrifice being the quality
of the music we were able to produce. If we look at man
made music, we can easily see that there is a lot of structure
in it. We see melodies that work towards some type of cli-
max and then ending resolution. We see harmonies support-
ing and sometimes mimicking the melody. We see clear sec-
tions that support or might even elaborate on other sections
in the piece. In the MFM, we have no way to look at the big
picture. Scope is severely limited (we can only see 4 spaces
away from any given point) and this presents a very large
challenge for us to overcome. If we want to make music
that resembles something a human might make, how can we
get past the fact that we can only make extremely small por-
tions of the overall piece work together? One possible way
might be to make more elements that represent the melody
or different harmonies. They would then need to be able to
communicate with each other beyond the scope of an event
window. We might be able to add in some type of behavior
to the Staff element that tries to facilitate this long distance
communication. What it really comes down to is getting
past one of the important parts of the MFM: no global state.
Since we did not want to try and get past this important part
of the MFM, we decided to use triads to try and make pleas-
ing music. Triads are a good approach because they are very
compact (thus able to be created and maintained within an
event window) and usually sound good together. Most mu-

sic simply takes some progression of triads and then elabo-
rates on them. Lots of popular music today does not even
elaborate on their triad progression. They will simply repeat
the chords over and over while singing over it. We believe
that this is the best approach to take when trying to generate
music within the MFM.

Conclusions
By comparing our model to a baseline of randomly gener-
ated music, we can conclude that our model succeeds in cre-
ating relatively pleasing music. Another interesting result of
studying this model is how overall consonance affects peo-
ples liking of music. We can see that people obviously dont
like randomly generated music. The more interesting result
is that people dont like perfectly consonant music. There is
some point in the middle wheres peoples liking peaks and
then starts to decline. We did not have enough samples of
music with differing scores be find this point with more ac-
curacy, but future work could look for a more accurate esti-
mate of this point. It might be interesting to measure existing
pieces of music using this scale and see where they score.

Acknowledgements
I would like to thank Dave Ackley for his work developing
the Movable Feast Machine and for offering his class on Ar-
tificial Life.

References
(2011). Unsupervised analysis and generation of audio percussion

sequences. In Ystad, S., Aramaki, M., Kronland-Martinet, R.,
and Jensen, K., editors,Exploring Music Contents, volume
6684 ofLecture Notes in Computer Science. Springer Berlin
Heidelberg.



Ackley, D. H. and Cannon, D. C. (2011). Pursue robust indefi-
nite scalability. InProc. HotOS XIII, Napa Valley, California,
USA. USENIX Association.

Baroni, M., Maguire, S., and Drabkin, W. (1983). The conceptof
musical grammar.Music Analysis, 2(2):pp. 175–208.

Doornbusch, P. (2005).The music of CSIRAC : Australia’s first
computer music. Common Ground Pub, Australia.

Hs, K. J. and Hs, A. (1991). Self-similarity of the ”1/f noise” called
music. Proceedings of the National Academy of Sciences,
88(8):3507–3509.

Miranda, E. (2007).Evolutionary computer music. Springer, Lon-
don.


