
Resource Finding and Distribution in an Indefinitely Scalable Machine

Ezra Stallings

University of New Mexico, Department of Computer Science. Albuquerque, NM 87131
vyross@unm.edu

Abstract

A large-scale network for communications or resource shar-
ing is a potentially valuable tool for spatially-embedded dis-
tributed computations. We propose a mechanism for build-
ing such a network, using a node-based pathfinding system
for use in a simulation where a number of nodes attempt to
engage in need-based resource allocation. In this paper, we
present an ”organic” network construction mechanism based
on spatially linked lists and diffusive search, and demonstrate
its effectiveness at discovering routes and managing resource
distribution and message passing, even in a dense, chaotic en-
vironment.

Introduction
Massively scalable computer architecture presents many de-
sign challenges. One of the most notable of these is the
impossibility of global identifiers of any kind, as no matter
how many bits you allocate to addressing, you can always
eventually run out. One proposed solution to this and other
concerns is an asynchronous cellular automata, which is cur-
rently being explored as the Movable Feast Machine (MFM)
(Ackley et al., 2013).

MFM Overview
In this simulated architecture, there are a series of tiles, each
one being run in parallel by any number processors or dis-
tinct computer chips. These tiles can be plugged together to
create a computer of arbitrary size. Within the MFM there
are Elements and Atoms; where an Element is a type of au-
tomaton, and an Atom is a specific instantiation of it some-
where in the simulation. There is also a notion of an Event
Window, which is an area in which an event can take place;
every time an Atom receives an update, it can only affect
a small, local area around itself. There are no global co-
ordinates in this system, and in order to promote emergent
behavior and to avoid some of the frailties of most tradi-
tional computational environments, there is a high degree of
spatially distributed computation, and running lots of small
events quickly, rather than doing a lot of work inside of in-
dividual Atoms.

Some of the consequences of working within this envi-
ronment are extremely desirable. For example, if part of the
machine goes down, experiences latency, or is physically de-
stroyed, the rest can continue to do useful work. If small er-
rors occur on a local level, these errors can (potentially) be
smoothed out, as thousands of atoms work together on small
parts of a larger problem. And due to the lack of global ad-
dress spaces and synchronization issues, the machine can be
constructed by piecing an arbitrary number of computers to-
gether in parallel.

However, there are a number of side effects which make
doing ”useful” work difficult; the effective speed of light in
the simulation becomes the radius of the event window, and
each atoms internal space is restrictively small. This has
potentially good consequences in terms of designing inher-
ently robust systems, but it does make it difficult for an atom
to find another in a potentially sparse environment.

Spatial Computing

These drawbacks make it problematic to establish any kind
of large-scale communication or routing networks. Search
and network routing algorithms are some of the most im-
portant contributions to modern computing, and it seems
highly desirable to attempt to adapt these techniques to a
new architecture, as well as to conduct further exploration
into methodologies for not just adapting old algorithms, but
inventing new ones, for spatial computation further in the
future(Ackley, 2013b). Even without thinking about strictly
spatial computations like the MFM, large-scale computing
is becoming increasingly spatial anyway, due to the mas-
sive numbers of computers and hard drives involved (Kelley,
2014) in ”the cloud”.

Generally, traditional search algorithms are designed to
find a specific item of interest. In a spatial computing con-
text, it seems more intuitive to consider search from the per-
spective of an individual atom; it might potentially be inter-
ested in any number of things, like resources, other atoms
of its type, or in the case of a predator/prey type scenario,
it might try to avoid threats or seek out food. In the cloud
computing example, we might be storing data in a redundant



fashion, and we just need to find one copy or version of it.
This kind of peer-to-peer spatial network is increasingly the
way of the world; it seems natural to start thinking about it in
the extreme, as scalability in search becomes an increasing
concern (Ke and Mostafa, 2013)

Similarly, the notion of a network in such a system should
be reconsidered from the point of view of an atom within the
simulation; it wants to be linked to other atoms, spatially, in
order to share resources, communicate, or otherwise benefit
from cooperative behavior. It seems reasonable to expect a
particularly good network would be one such that there is
a large amount of space between each node. In this way, a
node can benefit from having plenty of empty space nearby
to utilize, while still having the benefits of being a part of a
larger system.

Objectives
We sought to grow a network organically inside of the MFM,
in which isolated atoms must find and link with each other,
and then utilize the network for a simplistic resource distri-
bution technique. Network optimization for resource distri-
bution is an interesting problem (Cui et al., 2006), and while
these are in many ways separate problems, it is difficult to
do any kind of routing in spatial computation without also
performing discovery, and it seemed natural to try to test the
results of the search portion of the simulation by imposing
some kind of load upon the resulting network.

We set four primary objectives;

Spatial Linking
Our system should establish links between node atoms,
while maintaining distance greater than the event window
size, in order to create a spatially diverse network.

Optimized Routes
System links should become spatially optimal, with no un-
necessary curved paths.

Message Passing
Nodes should be able to utilize the network to communicate
some basic information to other nodes.

Demand-Based Resource Allocation
Network should engage in simple resource allocation be-
tween nodes.

To provide a reasonable abstraction for a large scale sys-
tem with supply and demand, we define a Village — an im-
mobile site that is capable of both supply and demand —
to represent an endpoint of the communications and rout-
ing network. For the purposes of this paper, issues such as
resource location/regional fertility, colonization, and popu-
lation growth or decline are ignored. We consider this a rea-
sonable omission, given the scope of the problems already
being considered. In order to find each other, we allow Vil-
lages to create Scouts, which engage in a Brownian-motion

inspired random walk, creating links between Villages by
creating Trails. These Trails are then used to pass resources
between Villages.

Metrics
To measure the success of our model at achieving the objec-
tives, we will need to show several things: first, that links
do get established regularly; second, that these links self-
optimize to at least a reasonable degree; third, that informa-
tion is able to reach Villages (nodes) from other Villages;
and fourth that this network works for basic resource alloca-
tion.

For measuring the effectiveness of the resource distribu-
tion, we introduce an attempt — generated when a Village
tries to consume nearby resources — which will result in
either a success event or a failure event. Multiple success
events can occur simultaneously, when Villages successfully
find many resources at once. We are particularly interested
in the ratio of success events to total attempts, since this
will be normalized for the amount of attempts made. For
simplicity’s sake, we will assume that a Village will always
consume all nearby resources upon making an attempt, and
that even a single resource will prevent failure. Finally, we
will divide Villages into high-demand and low-demand cate-
gories; because the system is designed to be demand-based,
we would expect to see the greatest gains in high-demand
nodes.

Networking and Resource Distribution
Working within the constraints of the MFM, we used four
Element types to represent the components discussed above:
Resources (Res), Villages, Trails, and Scouts. At a high
level, Villages create Scouts, and produce and consume Res
based on their supply and demand. Scouts leave Trails, and
will attempt to find other Villages. The Res element is one of
the built-in components of the MFM as described in (Ack-
ley, 2013a).

The Village Atom
Villages are created with a fixed supply of 8, and a random-
ized demand between 0 and 15. They also have a local de-
mand, representing an average of the demand of Villages
they have links to, plus their own. Finally, each Village has
a 10-bit ID, chosen randomly. Each time a Village updates,
it engages in the following behavior:

1. Probability of creating a new Res atom, and place it ran-
domly in the event window:

Prres =
1

16− Supplyv

2. Probability of attempting to consume all nearby Res
atoms:

Prconsume =
1

16−Demandv



3. If it attempts to consume and is able to find at least one
Res within its event window to consume, generate success
events for each Res consumed.

4. If it is unable to find any Res atoms, we consider this a
failure event.

5. After consumption and creation, the Village will count the
number of links it currently has established. If it has fewer
than 4, it has a 1% chance of creating a new Scout.

6. Finally, the Village recalculates its local demand.

The Scout Atom
Scouts travel in a randomly selected initial direction at half
of the maximum speed possible in the MFM - the event win-
dow radius, or speed of light - with a 5% chance of chang-
ing direction randomly during an update, and a 5% chance
of moving slightly off-direction (stuttering). Every time a
Scout moves, it leaves a Trail atom in its previous position.
Each Scout has a randomly selected 10-bit ID tag, which is
used to prevent paths from interfering with each other, and
a 10-bit tag corresponding to its Village of origin. When a
Scout scans its event window, if it finds a Village that does
not have the same ID as its origin, it will replace itself with
a Trail, effectively destroying itself and ending the search.

The Trail Atom
The Trails left by Scouts form a literal trail on the grid, each
separated by half an event window. Each Trail atom has a
sequential numerical ID of 10 bits, which starts at 0 with
the first Trail placed by any given Scout, and is incremented
each time a new Trail is placed. All Trails also have a 10-bit
ID field for their predecessor and successor, which are the
IDs for the Trail atoms placed immediately before and after
itself by the same parent Scout. The Trail can use these IDs
to find their predecessor and successor in the event window;
they use their immediate neighbors to move Res, adjust in-
ternal supply and demand counters, and to move themselves
to optimize the trail of Trail atoms to create a more direct
route. Trails also have 4 bits each to store upstream demand
and downstream demand, and 5 bits to store upstream lo-
cal demand and downstream local demand, which are used
to communicate between Villages what their neighbors de-
mand is, as well as to determine which direction the Trails
should send Res. Upstream refers to the Home Village; the
one at which the Scout that made the Trails originated from.
The trail nearest to the upstream Village will have an ID of 0.
Conversely, Downstream refers to the direction away from
home, and the Trail atom closest to that Village (assuming
one exists) will have the highest numerical ID in the path of
Trails. The distinction between demand and local demand
is the same for Trails as for Villages. Finally, each Trail
atom has a single bit each to know if it is an endpoint Trail
(has no predecessor or has no predecessor), which endpoint

it is (upstream or downstream) if it indeed is an endpoint,
and what direction Res should be routed - by default, this is
downstream (towards the Home Village).

The behavior of a Trail is more complex than that of a
Village or Scout. Each time the behavior function is called,
a Trail does the following:

1. Scan the event window, and attempt to find pred and succ,
the predecessor and successor Trail atoms.

2. If one or fewer is found, check for a nearby Tower to de-
termine if this Trail is an endpoint.

(a) If not an endpoint but unable to find both pred and succ,
remove self from the simulation.

(b) If an endpoint, determine which endpoint (upstream or
downstream).

(c) Copy either upstream or downstream demand and local
demand, as appropriate, into self.

3. Copy demand and local demand into self; upstream from
pred if pred was found, and downstream from succ, simi-
larly.

4. Determine traffic direction by comparing upstream and
downstream local demand. If upstream ¿ downstream, set
traffic direction upstream, otherwise downstream.

5. Set goal position to pred if traffic direction is upstream,
otherwise succ.

6. Move any nearby res to the closest empty position to goal.

7. Move self to a random position halfway between pred and
succ.

8. If pred and succ are within 4 of each other, delete self
from simulation, and:

(a) Modify pred to have the successor index of succ,
(b) Modify succ to have the predecessor index of pred

This can be broadly described as: first, copy upstream and
downstream messages into self from appropriate sources,
then move any nearby Res according to demand, and finally
move self to midway between neighbors. If the neighbors
can see each other, have them point at each other, then delete
self. The desired outcome of this is to create a spatial, dou-
bly linked list, with endpoints anchored at Villages. If a
hanging endpoint exists, part 2.a will execute, resulting in
a chain reaction that destroys the list. This is vital, as it pre-
vents the cluttering of the system with useless partial lists.
This can occur for a number of reasons: if something in-
terferes with a Village or a Trail in the middle of a list, or
if a Scout times out and dies, this will trigger the garbage
collection behavior. Having a dedicated space for upstream
and downstream messages allows each node to behave inde-
pendently of the others, with the endpoints responsible for



Figure 1: Resource distribution in action: Far Left: A Scout lays out Trails as it wanders. Left: Trails move Res towards a high
demand Village. Center: The bit-by-bit breakdown of a Trail. Right: Breakdown of a Village, along with the 4 categories of Village
based on Supply and Demand.

getting the initial data, and each other Trail only needing to
update whatever is most recently available from their imme-
diate neighbors.

Case Studies
In order to test for each of our four objectives outlined above,
we devised the following specific case studies, each of which
relates to a specific objective or a portion thereof:

A) With 5 randomly placed Village atoms and Scout cre-
ation enabled, find the ratio of Scouts that find a Village ver-
sus those that timeout and die over a period of 1000 AEPS
when:

1. There is a large, circular obstacle with r=20 made of Wall
atoms in the center of the simulation.

2. There is no obstacle.

B) For the first above case, verify that paths are in fact
forming, and count the number of times a path ceases to
self-optimize by forming a hard angle, loop, or switchback,
or fails to form altogether.

C) With 5 randomly placed Village atoms of varying sup-
ply and demand and Scout creation enabled, verify that in-
formation regarding supply and demand is being passed cor-
rectly along properly formed paths, and that traffic direction
is updating correctly.

D) Find the average prosperity index for 5, 10, 20, 40, 80,
160, 320, and 640 randomly placed Village atoms over a
period of 5,000 AEPS when:

1. Scout creation is enabled.

2. Scout creation is disabled.

All simulations were run on the standard-size MFM sim-
ulation grid, with dimensions 160 wide by 96 high, spread
across 12 tiles. The Epoch length was set to the default value
of 100 AEPS. We will define a High-Demand Village as a
Village atom with demand greater than or equal to 8; a Low-
Demand Village is a Village atom with demand less than 8.
To make the simulation easier to analyze, demand for a Vil-
lage atom never changes.



Figure 2: Trail self optimizing and message passing

Results
To verify that Scouts are reaching Villages (case study A),
we tallied the percentage of Scouts that reached a Village be-
fore timing out in a scenario with 5 Villages, over the course
of 1000 AEPS. We found that roughly 10% reached a Vil-
lage successfully, with the remainder dying of ”old age”.
When a large obstacle is placed in the center of the simula-
tion, that percentage actually increased to roughly 15%.

For case study B, we observed the simulation run over the
course of 1000 AEPS and determined that out of 21 suc-
cessful paths, 4 formed a hard angle and did not continue
to optimize, all were (eventually) interfered with by another
path causing one or both to be destroyed, and none formed
loops or switchbacks without either optimizing or failing as
a hard angle after solving the loop or switchback. Due to
the random choice of optimal position, an angled path will
often jitter between possible ”good states”; this jittering in
many cases allows a curve or loop to straighten itself prop-
erly. Furthermore, for case study C, we colorized the Trail
atoms based on traffic direction and were able to see that
changes did indeed propagate, sometimes taking as long as
200AEPS to resolve, but sometimes as few as 50. This con-
firms that supply and demand information is being transmit-
ted, as it is used to determine traffic direction. Due to the
difficulty of programmatically establishing any of this in-
formation — spatial data is hard to find patterns in — case
studies A, B, and C were conducted by hand.

For case study D, we found that, in the case of an individ-
ual simulation, the results varied greatly. As shown in Fig.
3, most small simulations with between 5 and 160 villages
yielded an overall loss of system success. However, there

Figure 3: Two canonical examples, showing change in suc-
cess after Trails were added to the simulation: Top: In most
cases with only a few Villages, Trails result in a net loss for
system success. Bottom: In a few, however, we can see
improvement for select Villages — at cost to the others.

were a minority of runs that showed a few Village atoms
performing better, at a cost for the rest. When this is aver-
aged across many runs (20), we can see from Fig. 4 (Top)
that the high-demand villages from the study case were only
performing about as well as the low-demand villages from
the control case.

Running it with 640 Villages yielded the graph in Fig. 4
(Bottom), where we see that the study case’s high-demand
nodes have outpaced those from the control case, while the
low-demand nodes from both are about equal. Other graphs,
from the cases with 5, 10, 40, 80, 160, and 320 villages,
have been excluded for brevity. We can see in the bottom
graph that high-demand nodes experience about 16% and
14% success between the study and control cases, respec-



Figure 4: Comparison of percentage of successful attempts
over time between 20 and 640 Villages

tively. In the top graph, the amount of chaos in the system is
evident, but it also stabilizes, with success rates of 9% and
10%. The error bars represent standard deviation.

In Fig. 5, we can see the average system success ratio
based on number of Village atoms in the simulation, with 20
runs for each data point. With a low number of villages, the
control case high and low demand Village atoms both per-
form better; at the other end of the extreme, the high demand
Villages from both the control and the study do much better
than low demand villages, and the study case high-demand
Villages do slightly better than those from the control. The
standard deviation for these are once again shown as error
bars.

Fig. 6 shows the percentage change in success between
the control and the study case with Trails enabled; the strong
upward trend clearly demonstrates that the simulation per-
forms better with more Villages. With fewer than 80 Village

Figure 5: Success based on amount of Res found per at-
tempt, with error bars for standard deviation

atoms, the results are negative for even high demand nodes,
and it is not until the 640 Village case that it is beneficial for
low demand Villages as well.

Figure 6: Percentage change in success by number of Vil-
lage atoms in the simulation

Discussion
Based on the results for case study A, we can see that while
a random walk is far from ideal for search in a typical com-
puting environment, it is perhaps acceptable in a spatial en-
vironment, due to the considerations of scope. Scouts were
able to find Villages regularly, and provided a link is estab-
lished so that constant scouting can be kept to a minimum,
this approach works decently. While random walk may be



used frequently in artificial life and cellular automata, there
are fewer if any cases of having randomly moving tendril
structures that can form semi-permanent links. Due to the
relative effectiveness of this Brownian walk at finding Vil-
lage atoms, and in absence of an environment where tradi-
tional, efficient pathfinding is possible, we will consider this
a reasonable solution to Objective 1. Note however that our
parameters may be non ideal, especially when the average
distance between Villages is taken into account, which we
did not. If the chances of changing direction and stuttering
are set too low, a Scout will often never change direction
unless forced too; too high, and a Scout can often wander
aimlessly for thousands of AEPS.

The results for case study B suggest that there may be
either an implementation or conceptual problem in our op-
timization logic, resulting in the occasional formation of a
hard angle. It is also possible (although unlikely) that this
occurs due to some of the inherent stochastic qualities of the
MFM itself. Additionally, paths are able to interfere with
each other, with seemingly more regularity than should be
permitted by a 10-bit random ID per scout. However, even in
face of this adversity, optimal paths do typically form. The
jittering appears to be vital to the formation of these paths, as
the removal of the random choice of possible new position
results in a high percentage of malformed paths. While the
end results were not ideal, it is encouraging that the system
is robust enough to handle these issues, and create a good
path the majority of the time. Objective 2 we consider to
be at least partially achieved, although some improvement
might be desired for further work in this area.

A previous version of Trails relied on signals to ”solidify”,
otherwise eventually timing out and dying like Scouts. This
version resulted in Trails that would become ”unhooked” at
the source Village atom, which in turn resulted in many more
Scouts being created. The net result was a MFM simulation
with a huge density of Trails, none of which were able to do
anything useful at all. The notion of allowing a Trail to ex-
ist at the source indefinitely unless the search fails from the
Scout’s point of view (and the failure is able to ripple back to
the endpoint) represents a certain amount of investment on
the part of a Village in its Scouts. This may not pay off for
an individual Village, but it greatly contributes to the overall
health of the system, benefiting all Villages in turn.

Case study C showed that the trails were able to pass
data back and forth successfully, which admittedly is exactly
what the system was built for. This could be modified to be
made much more general - other approaches that were tested
or concieved included having Message atoms that got passed
around and gradually lost signal strength before dying, hav-
ing a general-purpose message inside of Trails with a di-
rection and strength for propagation, and having a two-way
general-purpose message system. The Message atom idea
resulted in massive crowding of the board, while the general-
purpose messages proved to be either difficult to propagate

messages with correctly, or to require so many bits for han-
dling their logic that there was little space to store a message
of any real length. This would be an interesting area to ex-
plore further, as communcations inside of spatial computing
is a difficult problem, particularly with stringent space and
scope budgets like that of the MFM.

As was previously mentioned, it is difficult to gather real
data on the state of a large structure like a path in the MFM;
the asynchronous execution and massively multithreaded
nature make it inherently hard to collect data about specific
atoms in any kind of predictable or controllable fashion. The
constant state of churning in our system, as Trails are cre-
ated, destroyed, and optimized, and new Scouts constantly
disrupt the system by creating new Trails, adds to this dif-
ficulty. Therefore, we were unable to gather large amounts
of data for statistical analysis. What was seen from basic vi-
sual inspection was considered sufficient to verify the basic
functionality of the system, as well as to identify some areas
in which improvement could be made.

With the results from case study D, it is clear that the
Trails make things much worse for cases with fewer than
80 Villages. Based on visual inspection of the simulation
during runtime, we believe this is caused by the spatial par-
titioning effect that Trails can have; as they often cut a long
path across the simulation, impeding the movement of Res.
Under some circumstances, this makes it difficult for a Res
atom to randomly diffuse into the event window of a high-
demand Village. This spatial partitioning effect is poten-
tially useful, if it were more permanent, but the constant
churning of the machine prevents this from ever truly so-
lidifying.

The primary motivation for a dynamic resource allocation
framework in something like the MFM would be to allow
for more complex simulations where multiple spatial com-
ponents are able to cooperate, and have more structure than
currently found in the ”muddy” simulations powered by the
Dreg and Res framework(Ackley, 2013a). Despite this, our
simulation actually performed much better with a large num-
ber of Villages, resulting in a crowded universe once again.
Better persistence of Trails might help the low density sim-
ulations perform better, but would potentially come at a cost
of robustness.

The metric used to judge the success of the routing is
perhaps unfairly tipped to favor the high-demand Villages.
Starvation of the low-demand Villages is common. The ap-
plication of such a routing behavior might require a simula-
tion where ”feeder” nodes are creating lots of resources for
a number of ”hubs” which need the resources to do work.
Whether such a structure would be practical is open to spec-
ulation, but we suspect it could be. Also worth considering
is that while we fixed supply as a global constant and de-
mand on a per-village scenario for simplicity, these could
potentially be allowed to change.

We expected to see a general decline in the effectiveness



of the simulation with an increase in the number of Villages.
Our prediction was that the number of Scouts and Trails
would clutter the simulation, preventing any real movement
on the part of Res atoms, and thus starving high-demand
nodes. If Villages were merely close enough to get their Res
naturally, we would continue to not see any improvement
after adding Trails. As we can see in Fig. 6, the effect of
the Trails starts out as a detriment, but eventually becomes
useful — the opposite of what was anticipated.

The general robustness of the simulation is somewhat
lacking. Add a single Dreg atom, nuke a small area of the
board, or disable a tile and the whole thing starts to fall apart.
There is currently no means for Villages to reproduce, and a
single Trail deleted from a path will cause the entire path to
be destroyed. The first problem was solved in an earlier ver-
sion of the project, where Villages would send out Colonists
to create new Villages. This was removed as it contributed
to clutter of the simulation, and also made any meaningful
data analysis more tricky without greatly contributing to the
success of any of the major objectives. Continual creation of
new Villages helps, but in order to really make this system
resilient, Trail atoms would need to try to repair the path if
one Trail atom gets deleted in the middle. One possible way
of doing this is to allow a Trail atom to try to move towards
the last known position of the missing neighbor, to try to find
the next Trail in the series, and make a new Trail to fill the
gap. Another possibility would be to make a special variety
of a Scout that would try to stich a path back together again,
given an initial vector. This might work, since most paths
do converge to an optimal semi-straight line. Such a Scout
would need a short timer, however, to ensure it did not clut-
ter up the world if it failed, and it would also probably need
to be created with no chance of changing direction, and little
to no chance of stuttering.

While our model has a few problems in terms of robust-
ness and the optimality of the paths, we have shown that the
model is capable of creating a connected, mostly-optimal
network of spatially distributed nodes, and allowing these
nodes to communicate with each other, and performing rudi-
mentary need-based resource allocation, to the overall ben-
efit of the system of nodes - if there are enough nodes. It
seems plausible to us that this general approach or portions
thereof might be useful in other areas of artificial life or dis-
tributed computation, by creating a communication or traffic
network within a spatial environment.

Future Work
As mentioned above, the main areas of immediate improve-
ment with this model would be to reduce sensitivity to petur-
bation by Dregs(Ackley, 2013a), probably by granting Trails
the ability to self-replicate in order to patch up paths, as well
as smoothing out the remaining issues with the path opti-
mization. Beyond these, it might be useful to allow Trail
and Village atoms to use an internal counter to represent Res

rather than having Res atoms diffuse, as this would both free
up space for other work and prevent wandering Res atoms
from getting lost. Making the system robust against Dregs
and Res could make it useful for allowing, say, a component
of the MFM running Demon Horde Sort(Ackley, 2013a) to
communicate with something that uses the sorted data. This
could give rise to larger scales of structure, although it is
difficult to say for sure that this would work.

Additionally, it would be interesting to see the behavior of
the system with some kind of dynamically changing supply
and demand, perhaps where the demand of a Village con-
tinues to increase as long as it is able to find Res, before
coming to a plateau or eventually decreasing if a long period
of deficit endures. This would not necessarily demonstrate
the effectiveness of a network for resource distribution, but
rather be more akin to an economical model where prosper-
ous cities tend to grow. This could be particularly interesting
and potentially useful for artificial life applications if these
networks were able to grow new nodes by a modified version
of the colonizing mechanic discussed earlier, where success-
ful nodes are able to further colonize.

Acknowledgements
This work would not be possible without Professor Dave
Ackley of UNM, Trent Small, and the wonderful students
of UNM’s CS 491: Robust Artificial Life.

References
Ackley, D. H. (2013a). Bespoke physics for living technology. Ar-

tificial Life, 19(3 4):347–364.

Ackley, D. H. (2013b). Beyond efficiency. Commun. ACM,
56(10):38–40.

Ackley, D. H., Cannon, D. C., and Williams, L. R. (2013). A mov-
able architecture for robust spatial computing. The Computer
Journal, 56(12):1450–1468.

Cui, Y., Che, H., Lagoa, C., and Zheng, Z. (2006). Autonomic in-
terference avoidance with extended shortest path algorithm.
In Proceedings of the Third International Conference on
Autonomic and Trusted Computing, ATC’06, pages 57–66,
Berlin, Heidelberg. Springer-Verlag.

Ke, W. and Mostafa, J. (2013). Studying the clustering paradox
and scalability of search in highly distributed environments.
ACM Trans. Inf. Syst., 31(2):8:1–8:36.

Kelley, I. (2014). A distributed architecture for intra- and inter-
cloud data management. In Proceedings of the 5th ACM
Workshop on Scientific Cloud Computing, ScienceCloud ’14,
pages 53–60, New York, NY, USA. ACM.


